📋
docs.binaexperts.com
  • Introduction
  • Get Started
  • Organization
    • Create an Organization
    • Add Team Members
    • Role-Based Access Control
  • Datasets
    • Creating a Project
    • Uploading Data
      • Uploading Video
    • Manage Batches
    • Create a Dataset Version
    • Preprocessing Images
    • Creating Augmented Images
    • Add Tags to Images
    • Manage Categories
    • Export Versions
    • Health Check
    • Merge Projects and Datasets
    • Delete an Image
    • Delete a Project
  • annotate
    • Annotation Tools
    • Use BinaExperts Annotate
  • Train
    • Train
    • Framework
      • Tensorflow
      • PyTorch
      • NVIDIA TAO
      • TFLite
    • Models
      • YOLO
      • CenterNet
      • EfficientNet
      • Faster R-CNN
      • Single Shot Multibox Detector (SSD)
      • DETR
      • DETECTRON2 FASTER RCNN
      • RETINANET
    • dataset healthcheck
      • Distribution of annotations based on their size relative
      • Distribution of annotations based on their size relative
    • TensorBoard
    • Hyperparameters
    • Advanced Hyperparameter
      • YAML
      • Image Size
      • Validation input image size
      • Patience
      • Rectangular training
      • Autoanchor
      • Weighted image
      • multi scale
      • learning rate
      • Momentum
  • Deployment
    • Deployment
      • Legacy
      • Deployment model (Triton)
    • Introducing the BinaExperts SDK
  • ابزارهای نشانه گذاری
  • استفاده از نشانه گذاری بینااکسپرتز
  • 🎓آموزش مدل
  • آموزش
  • چارچوب ها
    • تنسورفلو
    • پایتورچ
    • انویدیا تاو
    • تنسورفلو لایت
  • مدل
    • یولو
    • سنترنت
    • افیشنت نت
    • R-CNN سریعتر
    • SSD
    • DETR
    • DETECTRON2 FASTER RCNN
  • تست سلامت دیتاست
    • توزیع اندازه نسبی
    • رسم نمودار توزیع
  • تنسوربرد
  • ابرمقادیر
  • ابرمقادیر پیشرفته
    • YAML (یامل)
    • اندازه تصویر
    • اعتبار سنجی تصاویر ورودی
    • انتظار
    • آموزش مستطیلی
  • مستندات فارسی
    • معرفی بینااکسپرتز
    • آغاز به کار پلتفرم بینااکسپرتز
  • سازماندهی
    • ایجاد سازمان
    • اضافه کردن عضو
    • کنترل دسترسی مبتنی بر نقش
  • مجموعه داده ها
    • ایجاد یک پروژه
    • بارگذاری داده‌ها
      • بارگذاری ویدیو
    • مدیریت دسته ها
    • ایجاد یک نسخه از مجموعه داده
    • پیش‌پردازش تصاویر
    • ایجاد تصاویر افزایش یافته
    • افزودن تگ به تصاویر
    • مدیریت کلاس‌ها
  • برچسب گذاری
    • Page 3
  • آموزش
    • Page 4
  • استقرار
    • Page 5
Powered by GitBook
On this page

Was this helpful?

  1. Deployment
  2. Deployment

Deployment model (Triton)

Triton is an advanced model serving platform developed by NVIDIA. It offers a highly optimized and scalable solution for deploying deep learning models in production environments. Here's some information about Triton:

  1. Scalability: Triton is designed to handle large-scale deployments and can scale to serve thousands of models concurrently. It efficiently utilizes resources to handle varying workloads and can be deployed across multiple nodes for increased capacity.

  2. High Performance: Triton leverages NVIDIA GPUs to deliver high-performance inference, enabling fast and efficient processing of inference requests. It supports GPU acceleration, allowing deep learning models to take full advantage of GPU computing power for inference tasks.

  3. Model Optimization: Triton includes features for optimizing model inference, such as dynamic batching and concurrent model execution. Dynamic batching optimizes inference by dynamically batching together multiple inference requests, reducing overhead and improving throughput. Concurrent model execution allows multiple models to run simultaneously on the same GPU, maximizing GPU utilization.

  4. Model Management: Triton provides capabilities for managing and versioning models, making it easy to deploy and update models in production environments. It supports model versioning, allowing multiple versions of the same model to coexist and be served concurrently. Additionally, Triton supports model health monitoring and automatic model rollback in case of failures.

  5. Flexible Deployment Options: Triton offers flexibility in deployment options, supporting deployment on-premises, in the cloud, or at the edge. It can be integrated with existing infrastructure and deployed in Kubernetes clusters for containerized deployments. Triton also provides APIs for seamless integration with other services and frameworks.

Overall, Triton simplifies the deployment and management of deep learning models in production environments, providing high performance, scalability, and flexibility for serving AI applications.

PreviousLegacyNextIntroducing the BinaExperts SDK

Last updated 1 year ago

Was this helpful?