📋
docs.binaexperts.com
  • Introduction
  • Get Started
  • Organization
    • Create an Organization
    • Add Team Members
    • Role-Based Access Control
  • Datasets
    • Creating a Project
    • Uploading Data
      • Uploading Video
    • Manage Batches
    • Create a Dataset Version
    • Preprocessing Images
    • Creating Augmented Images
    • Add Tags to Images
    • Manage Categories
    • Export Versions
    • Health Check
    • Merge Projects and Datasets
    • Delete an Image
    • Delete a Project
  • annotate
    • Annotation Tools
    • Use BinaExperts Annotate
  • Train
    • Train
    • Framework
      • Tensorflow
      • PyTorch
      • NVIDIA TAO
      • TFLite
    • Models
      • YOLO
      • CenterNet
      • EfficientNet
      • Faster R-CNN
      • Single Shot Multibox Detector (SSD)
      • DETR
      • DETECTRON2 FASTER RCNN
      • RETINANET
    • dataset healthcheck
      • Distribution of annotations based on their size relative
      • Distribution of annotations based on their size relative
    • TensorBoard
    • Hyperparameters
    • Advanced Hyperparameter
      • YAML
      • Image Size
      • Validation input image size
      • Patience
      • Rectangular training
      • Autoanchor
      • Weighted image
      • multi scale
      • learning rate
      • Momentum
  • Deployment
    • Deployment
      • Legacy
      • Deployment model (Triton)
    • Introducing the BinaExperts SDK
  • ابزارهای نشانه گذاری
  • استفاده از نشانه گذاری بینااکسپرتز
  • 🎓آموزش مدل
  • آموزش
  • چارچوب ها
    • تنسورفلو
    • پایتورچ
    • انویدیا تاو
    • تنسورفلو لایت
  • مدل
    • یولو
    • سنترنت
    • افیشنت نت
    • R-CNN سریعتر
    • SSD
    • DETR
    • DETECTRON2 FASTER RCNN
  • تست سلامت دیتاست
    • توزیع اندازه نسبی
    • رسم نمودار توزیع
  • تنسوربرد
  • ابرمقادیر
  • ابرمقادیر پیشرفته
    • YAML (یامل)
    • اندازه تصویر
    • اعتبار سنجی تصاویر ورودی
    • انتظار
    • آموزش مستطیلی
  • مستندات فارسی
    • معرفی بینااکسپرتز
    • آغاز به کار پلتفرم بینااکسپرتز
  • سازماندهی
    • ایجاد سازمان
    • اضافه کردن عضو
    • کنترل دسترسی مبتنی بر نقش
  • مجموعه داده ها
    • ایجاد یک پروژه
    • بارگذاری داده‌ها
      • بارگذاری ویدیو
    • مدیریت دسته ها
    • ایجاد یک نسخه از مجموعه داده
    • پیش‌پردازش تصاویر
    • ایجاد تصاویر افزایش یافته
    • افزودن تگ به تصاویر
    • مدیریت کلاس‌ها
  • برچسب گذاری
    • Page 3
  • آموزش
    • Page 4
  • استقرار
    • Page 5
Powered by GitBook
On this page

Was this helpful?

  1. Train
  2. Advanced Hyperparameter

YAML

A hyperparameter file in YAML format is a configuration file that contains the hyperparameters and settings used to train a neural network model. YAML (YAML Ain't Markup Language) is a human-readable data serialization language that is commonly used for configuration files due to its simplicity and readability.

Here's an example of what a hyperparameter file in YAML format might look like:

model:
  type: "resnet"
  num_layers: 18
  num_classes: 10

optimizer:
  type: "adam"
  learning_rate: 0.001
  weight_decay: 0.0001

training:
  batch_size: 32
  num_epochs: 100
  early_stopping:
    patience: 5
    min_delta: 0.001

data:
  train_data_path: "/path/to/train_data"
  val_data_path: "/path/to/val_data"

In this example:

  • Under the model section, hyperparameters related to the neural network architecture are specified, such as the type of model (e.g., ResNet), the number of layers, and the number of output classes.

  • Under the optimizer section, hyperparameters related to the optimizer used for training are specified, such as the type of optimizer (e.g., Adam), the learning rate, and weight decay.

  • Under the training section, hyperparameters related to the training process are specified, such as the batch size, number of epochs, and early stopping criteria.

  • Under the data section, paths to the training and validation datasets are specified.

Using a YAML file to store hyperparameters allows for easy modification and experimentation with different settings without having to modify the source code of the training script. Additionally, it provides a clear and organized way to document the hyperparameters used for training a model.

PreviousAdvanced HyperparameterNextImage Size

Last updated 1 year ago

Was this helpful?