📋
docs.binaexperts.com
  • Introduction
  • Get Started
  • Organization
    • Create an Organization
    • Add Team Members
    • Role-Based Access Control
  • Datasets
    • Creating a Project
    • Uploading Data
      • Uploading Video
    • Manage Batches
    • Create a Dataset Version
    • Preprocessing Images
    • Creating Augmented Images
    • Add Tags to Images
    • Manage Categories
    • Export Versions
    • Health Check
    • Merge Projects and Datasets
    • Delete an Image
    • Delete a Project
  • annotate
    • Annotation Tools
    • Use BinaExperts Annotate
  • Train
    • Train
    • Framework
      • Tensorflow
      • PyTorch
      • NVIDIA TAO
      • TFLite
    • Models
      • YOLO
      • CenterNet
      • EfficientNet
      • Faster R-CNN
      • Single Shot Multibox Detector (SSD)
      • DETR
      • DETECTRON2 FASTER RCNN
      • RETINANET
    • dataset healthcheck
      • Distribution of annotations based on their size relative
      • Distribution of annotations based on their size relative
    • TensorBoard
    • Hyperparameters
    • Advanced Hyperparameter
      • YAML
      • Image Size
      • Validation input image size
      • Patience
      • Rectangular training
      • Autoanchor
      • Weighted image
      • multi scale
      • learning rate
      • Momentum
  • Deployment
    • Deployment
      • Legacy
      • Deployment model (Triton)
    • Introducing the BinaExperts SDK
  • ابزارهای نشانه گذاری
  • استفاده از نشانه گذاری بینااکسپرتز
  • 🎓آموزش مدل
  • آموزش
  • چارچوب ها
    • تنسورفلو
    • پایتورچ
    • انویدیا تاو
    • تنسورفلو لایت
  • مدل
    • یولو
    • سنترنت
    • افیشنت نت
    • R-CNN سریعتر
    • SSD
    • DETR
    • DETECTRON2 FASTER RCNN
  • تست سلامت دیتاست
    • توزیع اندازه نسبی
    • رسم نمودار توزیع
  • تنسوربرد
  • ابرمقادیر
  • ابرمقادیر پیشرفته
    • YAML (یامل)
    • اندازه تصویر
    • اعتبار سنجی تصاویر ورودی
    • انتظار
    • آموزش مستطیلی
  • مستندات فارسی
    • معرفی بینااکسپرتز
    • آغاز به کار پلتفرم بینااکسپرتز
  • سازماندهی
    • ایجاد سازمان
    • اضافه کردن عضو
    • کنترل دسترسی مبتنی بر نقش
  • مجموعه داده ها
    • ایجاد یک پروژه
    • بارگذاری داده‌ها
      • بارگذاری ویدیو
    • مدیریت دسته ها
    • ایجاد یک نسخه از مجموعه داده
    • پیش‌پردازش تصاویر
    • ایجاد تصاویر افزایش یافته
    • افزودن تگ به تصاویر
    • مدیریت کلاس‌ها
  • برچسب گذاری
    • Page 3
  • آموزش
    • Page 4
  • استقرار
    • Page 5
Powered by GitBook
On this page

Was this helpful?

  1. Train
  2. Advanced Hyperparameter

Autoanchor

Disabling autoanchor check typically refers to turning off or bypassing the automatic anchor box generation process during object detection training. Anchor boxes are a crucial component in many object detection algorithms, such as YOLO (You Only Look Once), as they provide prior knowledge about the shape and size of objects in the image, which helps in predicting accurate bounding boxes.

However, in some cases, such as when you have a highly customized dataset or when the default anchor boxes do not suit your specific use case, you may want to disable the autoanchor check and manually provide anchor box configurations.

Here's how you might disable the autoanchor check in different object detection frameworks:

  1. YOLOv5: In YOLOv5, you can disable the autoanchor check by setting the autoanchor parameter to False in the model configuration YAML file. For example:

    model:
      ...
      autoanchor: False
      ...
  2. YOLOv4: YOLOv4 does not have a built-in option to disable autoanchor, but you can manually configure anchor boxes by providing a custom anchor configuration file. You would need to specify the anchor box sizes manually in the configuration file.

  3. Detectron2: In Detectron2, you can specify custom anchor sizes and aspect ratios in the model configuration YAML file under the MODEL.ANCHOR_GENERATOR.SIZES and MODEL.ANCHOR_GENERATOR.ASPECT_RATIOS parameters. By manually specifying anchor sizes and aspect ratios, you effectively disable the autoanchor check.

  4. Custom Implementations: If you're using a custom implementation of an object detection algorithm, you would need to modify the code responsible for generating anchor boxes to disable the autoanchor check. This might involve commenting out or removing the relevant code that automatically generates anchor boxes.

Keep in mind that disabling the autoanchor check requires you to provide custom anchor box configurations manually, which may require some experimentation and tuning to achieve optimal results for your specific dataset and use case.

PreviousRectangular trainingNextWeighted image

Last updated 1 year ago

Was this helpful?