📋
docs.binaexperts.com
  • Introduction
  • Get Started
  • Organization
    • Create an Organization
    • Add Team Members
    • Role-Based Access Control
  • Datasets
    • Creating a Project
    • Uploading Data
      • Uploading Video
    • Manage Batches
    • Create a Dataset Version
    • Preprocessing Images
    • Creating Augmented Images
    • Add Tags to Images
    • Manage Categories
    • Export Versions
    • Health Check
    • Merge Projects and Datasets
    • Delete an Image
    • Delete a Project
  • annotate
    • Annotation Tools
    • Use BinaExperts Annotate
  • Train
    • Train
    • Framework
      • Tensorflow
      • PyTorch
      • NVIDIA TAO
      • TFLite
    • Models
      • YOLO
      • CenterNet
      • EfficientNet
      • Faster R-CNN
      • Single Shot Multibox Detector (SSD)
      • DETR
      • DETECTRON2 FASTER RCNN
      • RETINANET
    • dataset healthcheck
      • Distribution of annotations based on their size relative
      • Distribution of annotations based on their size relative
    • TensorBoard
    • Hyperparameters
    • Advanced Hyperparameter
      • YAML
      • Image Size
      • Validation input image size
      • Patience
      • Rectangular training
      • Autoanchor
      • Weighted image
      • multi scale
      • learning rate
      • Momentum
  • Deployment
    • Deployment
      • Legacy
      • Deployment model (Triton)
    • Introducing the BinaExperts SDK
  • ابزارهای نشانه گذاری
  • استفاده از نشانه گذاری بینااکسپرتز
  • 🎓آموزش مدل
  • آموزش
  • چارچوب ها
    • تنسورفلو
    • پایتورچ
    • انویدیا تاو
    • تنسورفلو لایت
  • مدل
    • یولو
    • سنترنت
    • افیشنت نت
    • R-CNN سریعتر
    • SSD
    • DETR
    • DETECTRON2 FASTER RCNN
  • تست سلامت دیتاست
    • توزیع اندازه نسبی
    • رسم نمودار توزیع
  • تنسوربرد
  • ابرمقادیر
  • ابرمقادیر پیشرفته
    • YAML (یامل)
    • اندازه تصویر
    • اعتبار سنجی تصاویر ورودی
    • انتظار
    • آموزش مستطیلی
  • مستندات فارسی
    • معرفی بینااکسپرتز
    • آغاز به کار پلتفرم بینااکسپرتز
  • سازماندهی
    • ایجاد سازمان
    • اضافه کردن عضو
    • کنترل دسترسی مبتنی بر نقش
  • مجموعه داده ها
    • ایجاد یک پروژه
    • بارگذاری داده‌ها
      • بارگذاری ویدیو
    • مدیریت دسته ها
    • ایجاد یک نسخه از مجموعه داده
    • پیش‌پردازش تصاویر
    • ایجاد تصاویر افزایش یافته
    • افزودن تگ به تصاویر
    • مدیریت کلاس‌ها
  • برچسب گذاری
    • Page 3
  • آموزش
    • Page 4
  • استقرار
    • Page 5
Powered by GitBook
On this page

Was this helpful?

The term "patience" in the context of machine learning typically refers to the number of epochs to wait before terminating training if no improvement in the validation metric is observed. It is used in conjunction with techniques such as early stopping to prevent overfitting and improve the generalization of the model.

The value of "patience" is a hyperparameter that specifies the maximum number of epochs to continue training without improvement in the validation metric. The min and max values provided (0 and 100000, respectively) indicate the range within which the "patience" hyperparameter can be specified.

Here's what it means:

  • A "patience" value of 0 means that the training will stop immediately if no improvement is observed after the first epoch.

  • A "patience" value of 100000 means that the training will continue for a maximum of 100000 epochs even if no improvement is observed.

In practice, the value of "patience" is typically chosen based on experimentation and validation performance. It should strike a balance between allowing sufficient time for the model to learn meaningful patterns in the data and avoiding overfitting by stopping training when performance on the validation set starts to degrade.

A common approach is to start with a relatively small value for "patience" and gradually increase it if necessary. Values between 5 and 20 are often used as a starting point, but the optimal value may vary depending on the dataset, model architecture, and training objectives.

Last updated 1 year ago

Was this helpful?

  1. Train
  2. Advanced Hyperparameter

Patience

PreviousValidation input image sizeNextRectangular training