📋
docs.binaexperts.com
  • Introduction
  • Get Started
  • Organization
    • Create an Organization
    • Add Team Members
    • Role-Based Access Control
  • Datasets
    • Creating a Project
    • Uploading Data
      • Uploading Video
    • Manage Batches
    • Create a Dataset Version
    • Preprocessing Images
    • Creating Augmented Images
    • Add Tags to Images
    • Manage Categories
    • Export Versions
    • Health Check
    • Merge Projects and Datasets
    • Delete an Image
    • Delete a Project
  • annotate
    • Annotation Tools
    • Use BinaExperts Annotate
  • Train
    • Train
    • Framework
      • Tensorflow
      • PyTorch
      • NVIDIA TAO
      • TFLite
    • Models
      • YOLO
      • CenterNet
      • EfficientNet
      • Faster R-CNN
      • Single Shot Multibox Detector (SSD)
      • DETR
      • DETECTRON2 FASTER RCNN
      • RETINANET
    • dataset healthcheck
      • Distribution of annotations based on their size relative
      • Distribution of annotations based on their size relative
    • TensorBoard
    • Hyperparameters
    • Advanced Hyperparameter
      • YAML
      • Image Size
      • Validation input image size
      • Patience
      • Rectangular training
      • Autoanchor
      • Weighted image
      • multi scale
      • learning rate
      • Momentum
  • Deployment
    • Deployment
      • Legacy
      • Deployment model (Triton)
    • Introducing the BinaExperts SDK
  • ابزارهای نشانه گذاری
  • استفاده از نشانه گذاری بینااکسپرتز
  • 🎓آموزش مدل
  • آموزش
  • چارچوب ها
    • تنسورفلو
    • پایتورچ
    • انویدیا تاو
    • تنسورفلو لایت
  • مدل
    • یولو
    • سنترنت
    • افیشنت نت
    • R-CNN سریعتر
    • SSD
    • DETR
    • DETECTRON2 FASTER RCNN
  • تست سلامت دیتاست
    • توزیع اندازه نسبی
    • رسم نمودار توزیع
  • تنسوربرد
  • ابرمقادیر
  • ابرمقادیر پیشرفته
    • YAML (یامل)
    • اندازه تصویر
    • اعتبار سنجی تصاویر ورودی
    • انتظار
    • آموزش مستطیلی
  • مستندات فارسی
    • معرفی بینااکسپرتز
    • آغاز به کار پلتفرم بینااکسپرتز
  • سازماندهی
    • ایجاد سازمان
    • اضافه کردن عضو
    • کنترل دسترسی مبتنی بر نقش
  • مجموعه داده ها
    • ایجاد یک پروژه
    • بارگذاری داده‌ها
      • بارگذاری ویدیو
    • مدیریت دسته ها
    • ایجاد یک نسخه از مجموعه داده
    • پیش‌پردازش تصاویر
    • ایجاد تصاویر افزایش یافته
    • افزودن تگ به تصاویر
    • مدیریت کلاس‌ها
  • برچسب گذاری
    • Page 3
  • آموزش
    • Page 4
  • استقرار
    • Page 5
Powered by GitBook
On this page

Was this helpful?

  1. Train
  2. Models

DETR

Introduction

DETR (Detection Transformer) is an innovative object detection model developed by the FAIR (Facebook AI Research) team. This model utilizes transformer architecture, which is specifically designed for sequence processing. In this post, we will explore the features and applications of the DETR model.

Features of the DETR Model

  1. Network Architecture: DETR combines transformers with convolutional networks. In this model, images are first processed by a convolutional network to extract basic features. These features are then fed into the transformer, which is responsible for object detection and localization.

  2. Simplicity and Integration: Unlike traditional methods that used multiple complex stages for object detection, DETR offers an integrated and simple approach that reduces the need for complex preprocessing and postprocessing steps.

  3. High Accuracy: Using transformers in the DETR model enables it to capture long-range dependencies between pixels in an image, thus improving object detection accuracy.

  4. End-to-End Learning Support: A key feature of DETR is its end-to-end learning capability, allowing the model to directly map input images to final outputs without the need for complex and manual tuning.

  5. Support from Detectron2: The Detectron2 library provides the necessary tools to use and train the DETR model, enabling users to customize and optimize the model for their specific datasets.

Applications of the DETR Model

  1. Object Detection in Images and Videos: DETR can be effectively used for object detection in images and videos. This application is highly useful in fields like surveillance, security, autonomous vehicles, and augmented reality.

  2. Medical Image Analysis: In the medical field, DETR can be used to detect anomalies and diseases in medical images such as radiology and MRI scans, assisting doctors in making faster and more accurate diagnoses.

  3. Identification and Classification of Living Organisms: In biology and environmental science, the DETR model can be used to identify and classify different species of animals and plants in natural images, aiding researchers in studying biodiversity and environmental conservation.

  4. E-commerce: In online stores, DETR can be used to detect and classify products in images, enhancing user experience and enabling faster and more accurate product searches.

Conclusion

As an innovative model in object detection, DETR has found widespread applications across various domains due to its high accuracy and efficiency. With the powerful Detectron2 library, users can easily leverage this model and customize it for their specific needs.

We hope this post has provided you with a good understanding of the features and applications of the DETR model. If you have any questions or need further information, please feel free to share them in the comments section.

PreviousSingle Shot Multibox Detector (SSD)NextDETECTRON2 FASTER RCNN

Last updated 11 months ago

Was this helpful?