📋
docs.binaexperts.com
  • Introduction
  • Get Started
  • Organization
    • Create an Organization
    • Add Team Members
    • Role-Based Access Control
  • Datasets
    • Creating a Project
    • Uploading Data
      • Uploading Video
    • Manage Batches
    • Create a Dataset Version
    • Preprocessing Images
    • Creating Augmented Images
    • Add Tags to Images
    • Manage Categories
    • Export Versions
    • Health Check
    • Merge Projects and Datasets
    • Delete an Image
    • Delete a Project
  • annotate
    • Annotation Tools
    • Use BinaExperts Annotate
  • Train
    • Train
    • Framework
      • Tensorflow
      • PyTorch
      • NVIDIA TAO
      • TFLite
    • Models
      • YOLO
      • CenterNet
      • EfficientNet
      • Faster R-CNN
      • Single Shot Multibox Detector (SSD)
      • DETR
      • DETECTRON2 FASTER RCNN
      • RETINANET
    • dataset healthcheck
      • Distribution of annotations based on their size relative
      • Distribution of annotations based on their size relative
    • TensorBoard
    • Hyperparameters
    • Advanced Hyperparameter
      • YAML
      • Image Size
      • Validation input image size
      • Patience
      • Rectangular training
      • Autoanchor
      • Weighted image
      • multi scale
      • learning rate
      • Momentum
  • Deployment
    • Deployment
      • Legacy
      • Deployment model (Triton)
    • Introducing the BinaExperts SDK
  • ابزارهای نشانه گذاری
  • استفاده از نشانه گذاری بینااکسپرتز
  • 🎓آموزش مدل
  • آموزش
  • چارچوب ها
    • تنسورفلو
    • پایتورچ
    • انویدیا تاو
    • تنسورفلو لایت
  • مدل
    • یولو
    • سنترنت
    • افیشنت نت
    • R-CNN سریعتر
    • SSD
    • DETR
    • DETECTRON2 FASTER RCNN
  • تست سلامت دیتاست
    • توزیع اندازه نسبی
    • رسم نمودار توزیع
  • تنسوربرد
  • ابرمقادیر
  • ابرمقادیر پیشرفته
    • YAML (یامل)
    • اندازه تصویر
    • اعتبار سنجی تصاویر ورودی
    • انتظار
    • آموزش مستطیلی
  • مستندات فارسی
    • معرفی بینااکسپرتز
    • آغاز به کار پلتفرم بینااکسپرتز
  • سازماندهی
    • ایجاد سازمان
    • اضافه کردن عضو
    • کنترل دسترسی مبتنی بر نقش
  • مجموعه داده ها
    • ایجاد یک پروژه
    • بارگذاری داده‌ها
      • بارگذاری ویدیو
    • مدیریت دسته ها
    • ایجاد یک نسخه از مجموعه داده
    • پیش‌پردازش تصاویر
    • ایجاد تصاویر افزایش یافته
    • افزودن تگ به تصاویر
    • مدیریت کلاس‌ها
  • برچسب گذاری
    • Page 3
  • آموزش
    • Page 4
  • استقرار
    • Page 5
Powered by GitBook
On this page

Was this helpful?

  1. Train
  2. dataset healthcheck

Distribution of annotations based on their size relative

Previousdataset healthcheckNextDistribution of annotations based on their size relative

Last updated 1 year ago

Was this helpful?

To create a chart showing the distribution of annotations based on their size relative to their image, along with additional information about the average size of images containing annotations of each size category compared to the average dataset image size, you can follow these steps:

  1. Calculate Annotation Size: Determine the size of each annotation relative to its corresponding image. This could be measured in terms of area, bounding box dimensions, or any other relevant metric.

  2. Group Annotations by Size Category: Group the annotations into size categories based on their relative size compared to the image. For example, you could categorize annotations as small, medium, or large based on predefined thresholds.

  3. Calculate Average Image Size: Calculate the average size of images containing annotations for each size category. This can be done by averaging the dimensions (e.g., width and height) of images with annotations in each size category.

  4. Visualize Distribution: Create a chart (e.g., a bar chart) to visualize the distribution of annotations across size categories. Each bar represents a size category, and the height of the bar corresponds to the percentage of annotations in that category relative to the total number of annotations.

  5. Add Additional Information: Overlay additional information on the chart to provide context. For example, you can add blue bars to represent the average size of images containing annotations in each size category compared to the average dataset image size. Additionally, you can include cyan bars to show the percentage of images containing annotations in each size category.

Here's an example of how you might implement this visualization using Python and Matplotlib:

import matplotlib.pyplot as plt
import numpy as np

# Sample data (replace with your actual data)
size_categories = ['Small', 'Medium', 'Large']
annotation_counts = [100, 200, 150]  # Number of annotations in each size category
avg_image_sizes = [0.5, 0.7, 0.9]  # Average image size relative to dataset size
image_percentage = [30, 50, 20]  # Percentage of images containing annotations in each size category

# Create figure and axis objects
fig, ax = plt.subplots()

# Plot annotation distribution
ax.bar(size_categories, annotation_counts, color='skyblue', label='Annotation Count')

# Plot average image size
ax.bar(size_categories, avg_image_sizes, color='blue', alpha=0.5, label='Avg. Image Size')

# Plot image percentage
ax.bar(size_categories, image_percentage, color='cyan', alpha=0.5, label='Image Percentage')

# Add labels and legend
ax.set_xlabel('Size Category')
ax.set_ylabel('Count / Size')
ax.set_title('Annotation Size Distribution')
ax.legend()

# Show plot
plt.show()

In this example, size_categories represent the different size categories, annotation_counts represent the number of annotations in each category, avg_image_sizes represent the average size of images containing annotations in each category relative to the dataset size, and image_percentage represent the percentage of images containing annotations in each category. You should replace these sample values with your actual data.